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SUMMARY

Offline replay of hippocampal neural patterns sup-
ports the acquisition of new tasks in novel contexts,
but its contribution to consolidation of salient experi-
ences in a familiar context is unknown. Here, we
show that in a highly familiar spatial memory task,
large rewards selectively enhanced performance for
demanding task configurations. The reward-related
enhancement was sensitive to ripple-specific disrup-
tion, and the proportion of replay events positively
correlated with reward size and task demands. Hip-
pocampal replay thus selectively enhances memory
of highly rewarded locations in a familiar context.

INTRODUCTION

Experiences that are salient or relevant to an organism are

generally better remembered over time [1, 2]. The enhanced

memory is in part due to modulation of plasticity processes,

leading to stronger encoding at the time of the experience. How-

ever, selectivemodification and stabilization of thememory trace

after initial acquisition has also been suggested to depend on the

saliency of the experience [3]. Indeed, experiences associated

with larger reward are followed by increased incidence of cortical

markers for memory consolidation and lead to stronger and

longer-lasting memory [4, 5]. These studies suggest that experi-

enced reward modulates the prioritization of post-learning

processing and consolidation of associated memory traces [6],

although the neural circuit mechanisms are not well understood.

The ability to encode and remember past experiences is criti-

cally dependent on the hippocampus [7, 8]. Following initial

formation, a memory trace undergoes active post-processing

that is believed to reinforce hippocampal-cortical and cortico-

cortical connectivity, thereby establishing a persistent trace, or

schema [9]. Such system consolidation is thought to occur at a

timescale of months to years in humans and at least several

weeks in rodent models. The formation of a schema also leads

to a reduced dependency on the hippocampus for the retrieval
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of remote memories, as well as the consolidation of newly

formed memories associated to the pre-existing schema [10].

Population activity in the hippocampus captures the unique

features of an experience [11]. Reactivation or replay of the

experience-associated neuronal activity patterns in hippocam-

pal-cortical networks during rest or sleep [12–14] is considered

a prime neural substrate that enhances the acquisition and

consolidation of novel information [15]. There are two lines of

support for this: first, disruption of hippocampal activity specif-

ically during replay-associated sharp-wave ripples (SWRs)

impairs spatial learning [16–18]. Second, novel experiences

increase replay activity, both during and after experience, and

replay incidence decreases when novelty wears off [19–21].

Another factor that drives expression of replay during experience

is reward consumption [22, 23]. It remains unknown, however,

whether reward-driven upmodulation of hippocampal replay ex-

tends to the period after experience and supports enhanced

memory consolidation of the rewarded experience.

To investigate these questions, we trained rats to learn two

goal locations, one associated with a large reward and the other

with a small reward, in a highly familiar setting. We show that,

after a delay, rats remembered better the location associated

with large reward and that the reward-related enhancement of

memory was strongest for more challenging goal locations. To

assess the contribution of post-learning replay activity in this

paradigm, we performed ripple disruption during the delay and

show that it selectively impaired memory for highly rewarded

locations and, in particular, for more challenging locations. We

further monitored neuronal activity in the hippocampus, and

we demonstrate that post-learning replay activity of the large

reward experience was enhanced.
RESULTS

To examine whether and how hippocampal replay events

mediate selective reinforcement of two competing and differen-

tially rewarded learned associations, we first developed a task

in which rats were repeatedly tested for their memory of daily

varying position-reward size associations (Figures 1A and

S1A). Prior to the experiment, rats had been familiarized with
d.
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Figure 1. Dual-Environment Reward-Place Association Task

(A) The behavioral task is composed of three phases: instruction; delay; and

memory probe test. During instruction, rats learn to associate small (blue) or

large (red) reward amount with a specific target arm in the left and right envi-

ronment. During the memory test after the delay, the preference for the target

arm in presence of three distractor arms is assessed as a measure of memory.

Inset: labels for target arms based on their location relative to the separating

wall are shown.

(B) Left: the probability that animals first visit the target arm in the 2-min probe

trial is higher in the large reward environment as compared to the small reward

environment. Performance for both large and small reward environments are

well above chance (black horizontal line). Right: effect of target arm location on

pðvisit1 =TÞ is shown. Filled circles represent the mean and 99% confidence

interval and line and shaded region represent the mean and 95% credible

region of posterior predictive samples from Bayesian generalized linear model

(GLM) fit.

*** p<0.001. See also Figures S1 and S2 and Table S2.
the two environments and task rules. In training sessions, rats

routinely performed instruction and reinstatement trials with a

short 5 min intervening delay. During these training sessions,

an equal amount of reward (3 pellets) was presented in both

environments. Once the experiment started, large and small

rewards were introduced and a 2-h delay was imposed between

instruction and reinstatement or non-rewarded memory probe
trials (see Table 1 for number of training and experimental ses-

sions per animal). In the instruction phase of the task, rats alter-

nately visited the left and right environment five times to retrieve

either a large (9 pellets) or a small (1 pellet) reward (Figure 1A).

Rats spent more time consuming the reward on the platform at

the end of the target arm that was associated with a large reward

as compared to small reward (mean [99% confidence interval

(CI)]; large: 49.75 s [48.10, 51.50]; small: 6.44 s [5.92, 6.99]).

After the delay, rats were subjected to a memory probe test

separately for the large- and small-reward environments. The

animals were allowed to visit freely any of the available arms

(target and three distractors) for 2 min in absence of reward.

On their first journey, rats were more likely than chance level

(p = 0.25) to visit the target arm (pðvisit1 = TÞ; mean [99% CI],

large: 0.81 [0.73, 0.89], small: 0.62 [0.52, 0.72]; binomial test

under the null hypothesis of uniform arm visit probability, large:

p = 7:13 10�48, small: p = 4:73 10�22; Figure 1B). The prefer-

ence for the target on the first visit was stronger for the large

reward environment than the small reward environment (mean

large-small difference [99% CI]: 0.19 [0.07, 0.31]; McNemar

test, H0 : psmall = plarge; c
2 = 13.00; p = 0.00011). A bias for the

large reward environment was also reflected in a higher number

of visits over the 2 min of memory probe test and in a higher

average probability of visiting the target arm (Figures S1B and

S1C).

The asymmetry in target arm location relative to the separating

wall and the configuration of distractor arms during the memory

probe test may influence the animals’ performance. For

example, memorizing a centrally located target arm may require

a higher level of spatial integration, as compared tomemorizing a

target arm located at the edge for which the separating wall acts

as a prominent guiding cue. On the other hand, the addition of

distractor arms in the probe test may interfere with memory

retrieval, especially when the distractors are positioned close

to the target arm.

We first quantified the behavioral performance in the memory

probe trial separately for central, intermediate, and edge target

arm locations. The general reward-seeking behavior in amemory

probe trial did not vary systematically with the location of the

target arm (Table S2), but pðvisit1 =TÞ and pðTÞ did (Figures 1B

and S1C). The probability of the rats to first visit the target arm

was robust to the centrality of the target arm when associated

with large reward but increased from central to edge target

arm locations in the small reward condition. The result of logistic

regression (Table S2) showed a significant positive relation

between arm centrality and pðvisit1 =TÞ only for small reward

(slopesmall: 1.1 [0.6, 1.7]; slopelarge: 0.16 [�0.43, 0.77]), as well

as significant difference in the regression slopes between large

and small reward (Dslopelarge�small:�1 [�1.7, �0.16]). The differ-

ence between large and small reward conditions was largest for

central arms, whereas for edge arm locations, performance did

not differ between reward conditions (Figure 1B; post hoc two

proportion z test for large-small reward differences at center,

intermediate, and edge arm locations, with Bonferroni corrected

p value for three hypotheses; center: z = �3.73, p = 0.00058;

intermediate: z = �1.35, p = 0.54; edge: z = 0.35, p = 1).

Although animals had extended experience in the maze envi-

ronments (see Table S1 for the history of exposures to the maze

and arms for each animal) and they were pretrained to expect the
Current Biology 29, 1436–1444, May 6, 2019 1437



Table 1. Overview of Training and Experimental Sessions per Animal

Animal Training Memory Probe Other Behavioral Analysis SWR Disruption (On-Time/Delayed) Replay Analysis

CK001 18 2 4 2

CK002 19 2 4 2

CK004 19 2 4 2

CK005 14 24 28 3 11/9

CK006 19 2 4 2

FK010 7 7 22 7

FK018 7 10 10 9 13

FK021 4 3 20 3

FK022 10 6 20 6

FK023 14 6 20 6

FK026 13 24 36 5 9/9

FK027 13 13 22 6/5

FK028 9 10 10 3 5/2 4

FK030 29 2 8 1/1

FM001 9 19 50 19 4

FM002 9 16 34 16 8

FM003 4 11 20 11

FM004 8 13 20 13

FM005 15 21 36 3 7/3 4

FM008 17 8 8 8 10

FM009 8 14 46 14 23

S5E001 14 16 34 6 9/1 7

S5E2 30 26 32 11 13/2 4P
= 151

P
= 61=32

P
= 77

Breakdown of the number of sessions used in the behavioral analyses, sharp-wave disruption, and replay analyses. The other category includes ses-

sions with only reinstatement trials and re-training sessions (see STAR Methods for details). See also Table S1.
same size of reward during the post-delay reinstatement trials, it

is possible that motivation-related biases contribute to the pro-

nounced difference between large and small reward conditions

for the central target arm location. During the instruction phase,

the run speeds toward the reward platform and the dwell time at

the reward platform did not differ between central, intermediate,

and edge target arm locations (Figures S2A and S2B). This sug-

gests that animals were not more reluctant or less motivated

to enter central target arms as opposed to edge target near

the separating wall. To look for potential biases in the memory

probe test, we analyzed which distractor arm was visited first

in error trials only and did not observe a bias toward edge

arms (Figure S2C).

Next, we explored the dependence of task performance on the

configuration of the distractor arms relative to the target arm.

Overall, pðvisit1 =TÞ did not vary systematically either with the

number of distractor arms immediately adjacent to the target

arm or the compactness of distractor arms around the target,

when taking into account the effect of target arm location (Fig-

ures S2D–S2F).

The observed difference in task performance between the

two reward sizes may, at least in part, be mediated by memory

consolidation processes during the delay phase. We hypothe-

sized that the difference is mediated by increased reactivation

of place cell sequences that represent trajectories toward the

large reward. If true, we would expect that disruption of SWRs
1438 Current Biology 29, 1436–1444, May 6, 2019
during the delay negatively affects performance in the large

reward condition more strongly than in the small reward condi-

tion. To test this, we detected hippocampal SWRs online in the

delay phase and used closed-loop electrical stimulation of the

ventral hippocampal commissure to transiently disrupt ongoing

neural activity (61 sessions in 8 animals; Table 1; Figures 2A

and 2B). In control sessions (32 sessions in 8 animals; Table 1),

the electrical stimulation was delayed by 100–250 ms relative

to the time of SWR detection (Figure 2B). On-time stimulation

of the ventral hippocampal commissure significantly reduced

the ripple envelope as compared to delayed stimulation, indi-

cating successful disruption of SWRs (Figure 2C; Mann-Whitney

test: U = 1744.00, p = 9:63 10�12).

In control sessions with delayed stimulation, there was a

higher probability for animals to first visit the target arm in the

large reward condition as compared to the small reward condi-

tion (Figure 2D), similar to what we showed in sessions without

perturbation (see Figure 1B; note that the baseline performance

was lower in sessions without perturbation [i.e., Figure 1B],

because of a larger fraction of early sessions in these experi-

ments; see Figures S3A and S3B).

After SWR disruption, we found a marked decrease in

pðvisit1 =TÞ only for the large reward, but not small reward,

condition. We performed binomial regression with reward

and stimulation as categorical predictors (Table S3), which

showed an interaction effect (breward3stimulation: �1.9 [�3.9,



Figure 2. Disruption of SWRs during the

DelayPhase ImpairsBehavioral Performance

(A) Schematic of closed-loop SWR disruption

approach. Ripple oscillations detected online in

hippocampal area CA1 trigger electrical stimula-

tion of the ventral hippocampal commissure (VHC)

during the delay phase.

(B) Example on-time (top, left) and delayed control

stimulation (bottom) from twodifferent sessions. For

both examples, the top curve represents the unfil-

tered field potential and the bottom plot represents

the ripple oscillation envelope. Vertical gray line in-

dicates time of SWR detection, and red dots indi-

cate the time of VHC stimulation. Gray shaded

rectangles indicate the time windows before and

after detection used to assess SWR disruption. For

the two sessions, the averaged ripple envelope

around SWR detection is shown at top right.

(C) Quantification of ripple oscillation envelope

following SWR detection for on-time and delayed

control stimulation of the VHC. For each session, the

average ripple envelope was computed in a 30-ms

time window after detection and normalized to pre-

detection envelope (time windows as shown in B).

(D) The probability of visiting the target arm on the

first visit in the 2-minmemory probe trial ismarkedly

decreased after SWR disruption only for the large

reward condition.

(E) Effect of SWR disruption during the delay on the

probability of first visit to target depending on the

location of the target arm. The strongest effect of

disruption in large reward condition is observed

when the target arm is located in the center or in-

termediate position, but not the edge position.

** p<0.01, n.s. not significant. Error bars represent

95% CI. See also Figure S3 and Table S3.
�0.12]; posterior probability that breward3stimulation is less than

zero: p = 0.98). As a result, the difference between large and

small reward conditions in control sessions (bðlarge�smallÞjdelay:
1.6 [�0.09, 3.4]; posterior probability that bðlarge�smallÞjdelay is

greater than zero: p = 0.97) was not present anymore after

SWR disruption (bðlarge�smallÞjon�time: �0.38 [�1.2, 0.56]). Strik-

ingly, the decrease of pðvisit1 =TÞ in the large reward condition

after SWR disruption was most prominent when the target arm

was located in the more demanding central or intermediate po-

sitions, but this effect was not present when the target arm

was located at the edge (Figure 2E).

A possible mechanism to explain the sensitivity of task

performance to SWR disruption specifically for the large reward

condition is that a higher fraction of SWR-associated replay rep-

resents the target arm associated with large reward compared to

small reward. To investigate replay expression in the task, pop-

ulation spiking activity was recorded in hippocampal area CA1

during instruction and delay phases (see Table 1).

Spatial representations expressed in the SWR bursts were

analyzed using a neural decoding approach [24]. An encoding

model was constructed that captures hippocampal spatially

tuned activity during active exploration of the home and target

arms in the instruction phase (see STARMethods). Cross-valida-

tion analysis showed that the performance of decoding the

animal’s position in the instruction trials was high in most

sessions (Figures S4A–S4D). Sessions with low decoding perfor-
mance (75 percentile decoding error > 30 cm) were excluded,

leaving 77 sessions in 9 animals.

First, we confirmed the presence of replay during SWR events

in the instruction phase. As expected, given that animals spend

more time consuming the large reward, a strong bias was

found for the large reward target arm in the decoded spatial

representations (Figure 3A). We next analyzed replay of spatial

trajectories [14, 25] by fitting the best trajectory to the

maximum-a-posteriori position estimates using weighted

isotonic regression (see STAR Methods). Again, a strong bias

was found for trajectory replay of the large reward target and

in particular for inbound trajectories (Figures 3B–3G). Finally

and consistent with a previous report [23], the bias in replay

activity of the large reward target was strongest for events with

positions replayed in the opposite temporal order as during

behavior (reverse replay; Figure 3H).

For the remaining analyses, we focus on the delay phase and

asked whether the bias for replay of the large reward target arm

persisted in the delay as a possible explanation for the sensitivity

to SWR disruption. During the 2-h delay, animals spent on

average 85.89min in a state of quiescence (range: 64.46–

110.57 min). Within these quiet periods, the rate of SWR bursts

was on average 0.25 Hz [0.22, 0.27].

We first asked whether there was a general bias in the

decoded spatial representations toward the large reward target

arm. For each session, we computed the mean posterior
Current Biology 29, 1436–1444, May 6, 2019 1439



Figure 3. Hippocampal Replay Trajectories Are Biased toward Highly Rewarded Environment during Instruction

(A) Average of the per-session mean posterior probability distribution for small and large reward environments. Shaded region represents 95% CI. Bottom:

quantification of the average posterior probability in three regions of interest is shown.

(B) Examples of decoded replay events in left and right environments for SWR bursts during the instruction phase in one recorded session. In this session, large

rewardwas associatedwith the right environment. The shaded red line represents the fitted trajectory, and the score shown at the top corresponds to the R2 of the

isotonic regression fit weighted by the mean posterior probability at the mode.

(C) Overlay of all significant outbound and inbound trajectories in the left and right environments associated with small and large reward, respectively, from the

same recording session as in (B).

(D) Mean percentage of significant replay trajectories for large and small reward environments.

(E) Mean percentage of significant inbound and outbound replay trajectories.

(F) Mean percentage of significant replay trajectories for large and small reward environments, separated by inbound and outbound direction.

(G) Mean percentage of significant replay trajectories as a function of target arm location, split by reward and inbound and outbound direction.

(H) Mean difference in percentage between large and small reward replay trajectories for forward and reverse replay events, separated by inbound (top) and

outbound (bottom) trajectories. Error bar represents 99% CI.

*** p<0.001, n.s. not significant. Error bars represent 95% CI unless stated otherwise. See also Figure S4.
probability across all SWR bursts (Figure 4A, top). Across

sessions, there was an overrepresentation of locations proximal

to the reward site that was significantly greater for the large

reward target arm as compared to the large reward target arm

(Figure 4A, bottom; Kruskal-Wallis test for the large-small reward

difference across proximal, distal, and choice regions of interest:

H = 7.71, p = 0.021; post hoc one-sample Wilcoxon signed rank

test for each region of interest with Bonferroni adjusted p values:

choice Z = 1,256.00, p = 0.64, distal Z = 1,362.00, p = 1, proximal

Z = 994.00, p = 0.03). These results indicate that, over all SWR

bursts, there is a stronger representation of the locations close

to large reward platform.

We next quantified the percentage of all SWR bursts with

significant trajectory replay events in the delay phase using a

weighted isotonic regression of the position estimates. Signifi-
1440 Current Biology 29, 1436–1444, May 6, 2019
cance was tested at a = 0.01 for each event separately by

comparison to the distribution of regression outcomes after

500 randomizations of the data (see STAR Methods). The

average number of significant replay events was 104 ± 36

(range: 27–212), which amounted to 8.75% ± 2.52% of all

SWR bursts (range: 3.2%–15.5%), which is well above the ex-

pected 1% false positive rate.

Examples of significant replay trajectories for one session are

shown in Figure 4B. In this session, a majority of the significant

trajectory replay events represented the environment associated

with the large reward during the preceding instruction phase

(Figure 4C) and, in particular, inbound trajectories (from reward

site to home). Across all sessions, we observed a higher percent-

age of significant replay trajectories for the large reward target

arm than the small reward target arm (Figure 4D; mean [99%



Figure 4. Hippocampal Replay during Delay Is Biased toward Environment Associated with Large Reward
(A) Average of the per-session mean posterior probability distribution for small and large reward environments. Shaded region represents 95% CI. Bottom:

quantification of the average posterior probability in three regions of interest is shown.

(B) Examples of decoded replay events in left and right environments for SWR bursts during the delay phase in one recorded session. In this session, a large

rewardwas associatedwith the right environment. The shaded red line represents the fitted trajectory, and the score shown at the top corresponds to the R2 of the

isotonic regression fit weighted by the mean posterior probability at the mode.

(C) Overlay of all significant outbound and inbound trajectories in the left and right environments associated with small and large reward, respectively, from the

same recording session as in (B). Numbers indicate the percentage of trajectories for each category out of all candidate SWR bursts.

(D) Mean percentage of significant replay trajectories for large and small reward environments.

(E) Mean percentage of significant inbound and outbound replay trajectories.

(F) Mean percentage of significant replay trajectories for large and small reward environments, separated by inbound and outbound direction.

(G) Mean percentage of significant replay trajectories as a function of target arm location, split by reward and inbound and outbound direction.

(H) Mean difference in percentage between large and small reward replay trajectories for forward and reverse replay events, separated by inbound (top) and

outbound (bottom) trajectories. Error bar represents 99% CI.

*** p<0.001, ** p<0.01, * p<0.05, n.s. not significant. Error bars represent 95% CI unless stated otherwise. See also Figure S4.
CI] percentage significant replay trajectories, small: 4.25 [3.84,

4.71], large: 4.63 [4.20, 5.10]; Wilcoxon signed-rank test: Z =

925.00, p = 0.029). Although animals spent more time at the large

reward platform in the instruction phase, the percentage of

replay and the difference between large and small reward during

the delay phase were not related to the variation in reward plat-

form dwell time (Figure S4E). Possible decoding biases also did

not explain the bias for large reward target arm replay, as the

cross-validated decoding performance did not differ between

small and large reward environments (Figures S4A–S4D), the to-

tal run time, or multi-unit activity rate of the data included in the

encoding model (Figures S4F and S4G).

The difference in replay between small and large reward size

was largely due to a significantly higher percentage of inbound

replay trajectories in the large reward target arm (Figures 4E
and 4F; mean [99% CI] percentage significant inbound replay

trajectories, small: mean [99% CI], 2.31 [2.04, 2.65], large:

mean [99% CI], 2.58 [2.27, 2.94]; Wilcoxon signed-rank test:

Z = 796.00, p = 0.0074). No significant difference between small

and large reward target arms was found for outbound replay

trajectories (Figure 4F; mean [99% CI] percentage significant

inbound replay trajectories, small: mean [99% CI], 1.94 [1.74,

2.17], large: mean [99% CI], 2.04 [1.81, 2.30]; Wilcoxon

signed-rank test: Z = 1,382.50, p = 1). Interestingly, the in-

bound-to-outbound replay bias for the large reward target was

strongest when the target was located centrally (Figure 4G).

Finally, we decoded running direction in addition to position

and determined whether each replay event during the delay

phase represented forward or reverse replay. Of all significant

replay trajectories, 44.95% [41.56, 48.47] had significant bias
Current Biology 29, 1436–1444, May 6, 2019 1441



for one of the two running directions with respect to a shuffle dis-

tribution (Monte-Carlo p value < 0.01; forward replay: 26.48%

[24.40, 28.59], reverse replay: 18.51% [16.57, 20.55]). Quantifi-

cation of the (large-small) reward replay difference separately

for forward and reverse replay trajectories (Figure 4H) showed

a bias toward reverse replay for inbound trajectories. Overall,

these data indicate that there is an enrichment of inbound replay

trajectories that represent the large reward target arm but use

the outbound place map (e.g., reverse replay).

DISCUSSION

Altogether, our results show for the first time that post-learning

hippocampal replay is modulated by previously experienced

reward and contributes to the selectively enhanced consolida-

tion of highly rewarded experiences. This effect was observed

while the animals were well accustomed to both the mazes

and task rules, suggesting a role for replay in the consolidation

of food-place associations beyond the learning and consolida-

tion of rules and environment representations. Our results also

suggest that the replay-mediated reward-related enhancement

of memory was dependent on the task difficulty. Overall, these

results suggest that replay contributes to the finely tuned selec-

tive consolidation of memories under the influence of both

behavioral benefit and cognitive demand.

In our behavioral paradigm,memory for small and large reward

place associations is compared within the same experimental

session. Although rats remembered both locations above

chance after the 2-h delay, they showed better performance

for the place associated with large reward. This reinforcing effect

of reward on memory retention is consistent with the results of

previous studies in humans [4, 5, 26, 27] and in rodents [3].

The performance boost provided by large reward in the instruc-

tion phase depended on the location of the target arm relative to

the wall dividing both environments and was largest for centrally

located target arms. This difference may be explained by the

use of two different strategies: a non-hippocampal-dependent

cue-response approach for target arms that are close to the

dividing wall and a hippocampal-dependent strategy that re-

quires a higher level of spatial integration for centrally located

target arms [28] and is more challenging. If true, the large reward

would then act to selectively strengthen or protect the hippo-

campal-dependent memory trace. This is further supported by

the larger effect of hippocampal SWR disruption and the larger

replay bias for more centrally located target arms. An alternative

explanation for the difference in performance on central target

arms for small and large rewards could be a different trade-off

between the natural dislike of rats to enter open spaces (‘‘wall

hugging’’) and the motivation to retrieve reward. In our experi-

ments, rats had extensive experience with the maze apparatus

and were trained repeatedly (in reinstatement trials) to expect

equal size reward in the test phase after instruction. As a result,

rats did not show a behavioral preference for edge arms over

central arms. Thus, although the rats’ behavior in the memory

probe trials may include a motivational component, we do not

think it fully explains the effects of target arm location.

We found that disruption of hippocampal activity selectively

during SWR bursts in rest negatively affected memory perfor-

mance in the test phase. This shows that, even after extended
1442 Current Biology 29, 1436–1444, May 6, 2019
training, when rats are highly familiar with the task rules and

maze environments, hippocampal SWRs continue to contribute

to learning and consolidation of the daily changing reward-place

associations. Previous studies demonstrating a role of hippo-

campal SWRs in spatial memory consolidation using SWR-

selective disruption were conducted with animals that were

naive to the environment and task [17]. These studies could

therefore not dissociate the contribution of hippocampal SWRs

to the learning of reward-place associations from the acquisition

of task rule and the familiarization to a novel spatial context.

Surprisingly, SWR disruption only affected behavioral perfor-

mance in the large reward condition. No effect was observed

in the small reward condition, despite the presence of hippocam-

pal replay patterns that correspond to the small reward target

arm. These results indicate that the large-reward-associated

boost in memory test performance is supported by the presence

of SWR bursts in the delay phase. For the less salient small

reward condition, short-term (2-h) memory may be solely sup-

ported by the initial encoding in the instruction phase. Without

subsequent post-processing during the delay, the small reward

place associations may quickly decay after 24 h [3]. Future

studies will need to reveal whether hippocampal SWRs are

indeed also required for long-term (24-h) memory maintenance

of the large reward place association.

Pointing to a possible mechanism for the selective vulnera-

bility of large reward associations to hippocampal SWR disrup-

tion, we demonstrated that hippocampal replay activity during

rest is biased toward the environment associated with large

reward. This result is consistent with fMRI experiments in

humans that revealed preferential reactivation after learning of

hippocampal representations of the context associated to large

reward [27]. Whether the preferred reactivation observed using

fMRI is the result of spike sequence replay during short-lasting

SWR bursts, however, is still an open question.

Previous studies showed that the amount of reward

consumed on themazemodulates the incidence of awake replay

[22], an effect that is specific to replay in the reverse temporal or-

der compared to behavior [23]. Our results extend these findings

to the rest period immediately after the learning experience, by

showing a higher proportion of replay corresponding to the large

reward target arm. Interestingly, we found that the higher propor-

tion was explained by a bias for reverse replay trajectories,

despite an overall higher number of forward replay events. This

result differs from the equal occurrence of all preplay types after

cueing (and prior to actual sampling) a rewarded goal location

[29]. This suggests that preplay of unvisited cued trajectories in

an otherwise known and observable environment does not share

the exact same mechanisms as replay of visited trajectories that

led to reward. Consistent with a previous report [30], we also

found an overall spatial bias for the reward site and its vicinity.

Compared to awake replay in the instruction phase, the fraction

of significant trajectory replay in rest is lower. However, the ab-

solute number of significant replay events in the 2-h delay is still

an order of magnitude higher, which points to a potentially larger

impact of replay events during the delay period on enhanced

memory retention.

The bias toward replay for the large reward target arm in the

delay period may be a consequence of stronger encoding in

the hippocampal network of the rewarded experience during



the instruction phase, likely through dopamine-modulated

synaptic plasticity. Indeed, it has been shown that the expres-

sion of hippocampal replay is dependent on the activation of

the plasticity mediated by NMDA receptors during experience

[30–32]. In addition, dopamine release varies with reward

amount, and in the hippocampus, dopamine is known to pro-

mote synaptic potentiation [33, 34]. Finally, it has been shown

that photostimulation of the ventral tegmental area (VTA)

dopaminergic inputs to CA1 during learning enhances the

post-learning reactivation of place cells with newly formed place

fields [35].

Awake replay events during the instruction phase may also

have contributed to the subsequent bias in replay content

in rest toward the large reward target arm. Indeed, the reactiva-

tion of spike patterns during sharp wave ripples is thought to

induce synaptic plasticity [36, 37]. Moreover, reverse replay

rate is modulated by reward amount and reward responsive neu-

rons in the VTA are co-activated with hippocampal reactivation

during learning [38]. Consistent with this view, we found that

the bias in replay for the highly rewarded arm was specific for

inbound reverse trajectories initiated at the reward site both

during learning and subsequent rest phase.

The demonstrated replay bias for the large reward condition in

the delay period likely stabilizes the memory trace over time and

hence supports highermemory retention during the test. Still, the

bias is relatively modest and other factors may also be at play.

Currently, we cannot exclude that qualitative differences

between trajectory replay of small and large reward environ-

ments complement the quantitative differences. For example,

a stronger coupling between hippocampus and VTA [27] for large

reward replay events may result in a bigger change in synaptic

weights. It is also conceivable that the large fraction of SWR

bursts that were not classified as replay events still contribute

to the enhanced memory performance for large reward-place

associations. Future experiments that include replay-content-

specific manipulations [39] will be able to shed light on these

open questions.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Rat: Long Evans Janvier, France Cat# RjOrl:LE

Software and Algorithms

Scientific Python [43, 47] http://www.scipy.org

Falcon real-time neural signal processing software [42] http://www.bitbucket.org/

kloostermannerflab

Neural decoding without spike sorting [44, 45] N/A

Other

Digilynx SX acquisition system with HS-36 analog

headstage and Cheetah software

Neuralynx http://www.neuralynx.com

12 mm polyimide-insulated nickel-chrome tetrode wire Sandvik Cat# NI055820

60 mm polyimide-insulated stainless steel stimulation wire California Fine Wire http://www.calfinewire.com

Stimulus generator MultiChannel Systems STG4000 Series
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Fabian Kloosterman

(fabian.kloosterman@nerf.be).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

A total of 23male Long Evans rats food deprived to 85%–90%of the free-feedingweight were used in this study. At the start of behav-

ioral training procedures, animals were 7-10 weeks old. Thirteen animals received an implant for electrical recording, and 10 rats did

not undergo surgical procedures and were only tested behaviorally. Table 1 provides an overview of the experimental sessions for

each animal.

All experiments were carried out in accordance with protocols approved by KU Leuven animal ethics committee (P119/2015) in

accordance with the European Council Directive, 2010/63/EU. Animals in experiments were housed separately in individually venti-

lated cages (IVC) with ad libitum access to water and controlled intake of standard food pellets. Health status and body weight are

checked daily by the experimenters and dedicated animal care personnel.

METHOD DETAILS

Apparatus
The behavioral testing apparatus was located in one of two 4x4 m rooms with black walls and distinctive, orienting cues on each of

the walls. The apparatus was elevated 40 cm off the ground and consisted of a home platform that via a short 30 cm track gave

access to the left and right side of the room (Figure 1A). The left and right environments were separated by 120 cm high dividers.

In each environment, a choice platform gave access to at most 6 radially emanating 90 cm long arms with neighboring arms sepa-

rated by 30�. Access from the home platform to the two environments was controlled by a door that was manually positioned by the

experimenter.

Behavioral task
The goal of the task was for the rat to associate one of the 6 arms in each environment with reward. In each daily session, one

environment was associated with large reward (9 pellets) and the other with small reward (1 pellet). After an acquisition phase, in

which the animal could explore the rewarded target arms across 5 instruction trials per environment, and after a subsequent 2h delay,

the rats were tested for their memory of the daily reward-location association in the presence of three additional distractor arms

(Figure 1A). Across sessions, the location of the target and the large/small reward assignment of the target arm were varied

pseudo-randomly (Figure S1). The location of the distractor arms were chosen pseudo-randomly, such that at least one distractor

arm was directly adjacent to the target arm and the target arm of the previous session was not part of the distractors.
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Behavioral procedure
In the instruction phase, only the two target arms were physically present in the two environments. The instruction was given in

5 blocks of 2 trials, one trial for the left and right environment. In each trial, the rat started at the home platform and was given

exclusive access to one of the environments. A new trial started as soon as the rat consumed the reward at the end of the target

arm and returned to the home platform. The presentation order of the environments within the blocks was constant within a session

and randomized across sessions.

Following the instruction phase and before the test phase, the rat was removed from the maze apparatus for either a short (at most

15 minute) delay during training or a 2h delay in experimental sessions. During the delay, the rat was either returned to its home cage

(when no electrophysiological recordings were performed) or placed in a 40x40 cm rest box with 60 cm high wall that was located

inside the room.

After the delay, rats were subjected to three reinstatement trials separately for the two environments in the presence of distractor

arms. In each reinstatement trial, rats were rewarded for visiting the target armwith equal amount (3 pellets), regardless of the reward

magnitude associated with the target arm in the instruction phase. The reinstatement trials served to train the rats to search for

reward in the target and to ignore non-rewarded distractor arms. In approximately 50% of sessions, the first reinstatement trial

was replaced by a two-minute long unrewarded memory probe trial for each of the two environments (for number of sessions per

animal, see Table 1). This procedure was followed to make sure that the rats retained their motivation to search for reward in the

memory probe trials.

Behavioral training
Prior to experimental sessions, animals were gently handled by the experimenter at least 5minutes per day for 7 days and pre-trained

to run back-and-forth on an elevated linear track (40 cm high and 90 cm long) for food rewards (3 pellets). Pre-training continued until

the rats executed at least 20 laps within 10 minutes for three sessions in a row. The rats were then familiarized with the overall struc-

ture of the reward-place association task. During these daily training sessions, both environments were associated with an equal

amount of reward (3 pellets) in the instruction phase, the delay was kept short (5-15 minutes), and rats were subjected to three rein-

statement trials after the delay. The familiarization lasted until the rats went straight to the target arm on the first reinstatement trial in

both environments for at least 3 sessions in a row (for number of training sessions, see Table 1). Animals that did not reach criterion

were excluded.

Surgical procedures
Custom-designed 3D-printed micro-drive array [40, 41], carrying up to 24 tetrodes (four twisted 0.012 mm polyimide-insulated

nickel-chrome wires, blunt cut; Sandvik, Kista, Sweden) and 3 stimulation electrodes (two twisted 0.06 mm polyimide-insulated

stainless steel wires, blunt or angled cut; California Fine Wire, Grover Beach, CA), was surgically attached to the rat skull using

standard aseptic techniques. After initial induction of anesthesia (5% isoflurane in induction chamber), the rat’s scalp was shaved

and the rat’s head was securely mounted in a stereotaxic frame. Throughout the surgical procedure, anesthesia was maintained

using 0.5%–2% isoflurane administered through a nose cap. The level of anesthesia was kept constant by continuously monitoring

the breathing and heart rate and the concentration of isoflurane was adjusted when needed. The body temperature of the rat was

measured using a rectal probe and kept constant using an electrical heating pad. Following disinfection of the scalp with iodine

and isopropyl alcohol, the skull was exposed and 8-10 anchoring bone screws (Fine Science Tools, Heidelberg, Germany) were

inserted around the perimeter. One of the bone screws was used as a ground for electrophysiological recordings. Next, craniotomies

were made to provide access to the hippocampus for recording electrodes (center coordinates: 4 mm posterior to Bregma, 2.5 mm

right from themidline) and to the ventral hippocampal commissure for stimulation electrodes (center coordinates: 1.3mmposterior to

Bregma, 0.9 mm right from the midline). After removal of the dura, the micro-drive array was fixed in place to the anchoring screws

using light-curable dental cement (SDI, Bayswater, Australia).

Electrophysiological recording
After 1 week of post-operative recovery, stimulation and recording electrodes were lowered into position over the course of

2-3 weeks. Recording electrodes weremoved into the hippocampal area CA1 pyramidal cell layer.Wide-band (0.1 Hz - 6 kHz) signals

were sampled at 32 kHz and digitized using a 128-channel data acquisition system (Digilynx SX acquisition systemwith HS-36 analog

headstage and Cheetah software; Neuralynx, Bozeman, MO). Waveform snippets of online detected spike events in the band-pass

filtered signal (600 Hz - 6 kHz) were saved to hard disk at the original sampling rate. The position and head direction of the animal were

tracked and captured at 50 Hz using an overhead video camera and colored LEDs mounted on the headstage. Implanted animals

were retrained in the task without delay during the time electrodes were lowered in place, and they only entered the experiment after

reaching criterion (see Behavioral training).

Online ripple detection and disruption
A network stream of digitized multi-channel samples from the DigiLynx acquisition system was fed into a quad-core workstation

that supports hardware-based multithreading. The workstation ran the open source real-time processing software Falcon [42]

and generated TTL pulses via an isolated Digital Input/Output (DIO) module (USB-4750, Advantech Benelux, Breda, the Netherlands)

or Arduino UNO.
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Falcon software was configured with a data processing graph that detected transient increases in hippocampal ripple power in

the incoming data stream. Raw signals from 1-3 electrodes were filtered between 135 and 255 Hz using a Chebyshev type-II IIR

filter (order = 20) that was designed to minimize group delay (minimum delay of 6.5 ms at 200 Hz). Ripple power was summed across

electrodes and ripple events were detected when the summed power exceeded f 3 madðtÞ + mðtÞ, where mðtÞ and madðtÞ are

running estimates of the mean and mean absolute deviation calculated on the ripple power, and f is a multiplier set to a value in

the range [5, 13]. Estimates of mðtÞ and madðtÞ were computed using an exponential moving average filter with span set to a value

in the range of [5, 15] seconds. Estimates were not updated during a 50 ms window after each detection.

To reduce spurious detections induced bymovement artifacts or stimulus-evoked responses, the same ripple detection procedure

was applied to signals from 1-2 electrodes that were positioned in the cortex overlying the hippocampus. Hippocampal ripple

detections were ignored if they fell within a time window (�40 ms to 1.5 ms) around spurious detections in the cortical signals.

Detection of a ripple event triggered a TTL pulse on the DIO card or Arduino UNO that was sent to the Diglynx system for logging

and to a constant-current stimulator (MultiChannel System, Reutlingen, Germany) for electrical stimulation of the ventral hippocam-

pal commissure. Amplitude of the biphasic electrical pulses (0.2 ms duration) varied from 100-500 mA and was set in each session

to the lowest amplitude that resulted in consistent disruption of hippocampal ripple events. A lock-out period was used to limit

the output stimulation frequency to 2 Hz and avoid overstimulation. In control experiments, electrical stimulation was delayed

by 100-250 ms relative to the detection of a ripple event. Detections that occurred during the delay period were discarded. No

systematic change in the evoked response was observed over the 2 hours of stimulation (Figure S3H), indicating that the SWR

disruption procedure did not induce long-term plasticity.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of neural and behavioral data was performed using Python and its scientific extensionmodules [43], augmentedwith custom

Python and C++ toolboxes.

Behavior
In the instruction trial, the average running speed to and from the reward platform was quantified only for the implanted animals,

based on video tracking of the head-mounted LEDs. Average speed was computed over the journey that started when the animal

left home and ended when the animal reached the reward platform at the end of a target arm (and vice-versa for the homebound

journey).

In the memory probe trial, the number and pattern of visits to the target and distractor arms were quantified as measures of

performance in the reward-place associative task. A visit to an arm was only counted if the animal reached the reward platform at

the end of an arm. We defined the following quantities and (conditional) probabilities to characterize the reward-seeking behavior

in the probe trial: Nvisits: the total number of arm visits in the 2 minute memory probe trial. pðvisit1 = TÞ: the across session mean

probability that the first visit is on target. pðTÞ: the across session mean probability that a visit is made to the target, computed by

averaging the equivalent per session pðTÞ.

Offline ripple detection
The local field potential recorded from 1-3 tetrodes was downsampled from 32 kHz to 4 kHz and filtered in the ripple frequency band

(140-225 Hz). The ripple envelope was computed as the absolute value of the Hilbert-transformed ripple signal, averaged across the

recording sites and smoothed with a Gaussian kernel (bandwidth 15 ms). Slow trends in the ripple envelope were removed using a

moving median filter (window length 3 s). Finally, start and end times of ripple events were detected when the detrended ripple

envelope exceeded a low threshold of m+ 0:53s and the maximum envelope exceeded a high threshold of m + 83 s. Here,

m and s represent the mean and standard deviation of the detrended envelope. Ripple events that were separated by less than

20 ms were merged into one, and events with a duration shorter than 40 ms were excluded.

Evaluation of online ripple detection and disruption
Online SWR detection accuracy was verified in a group of sessions in which SWRs were detected during the delay, but no on-time or

delayed electrical stimulation was performed. Online detected SWRs were compared to offline defined SWRs to identify the fraction

of offline SWRs that were correctly detected online (true positive rate or TPR) and the fraction of online detections that did not

correspond to an offline defined SWR (false discovery rate, FDR) (Figure S3C). The online SWR detection rate varies across sessions

due to differences in signal-to-noise ratio and experimenter-set detection threshold. Higher detection rates are accompanied by

increasing true positive and false discovery rates. The true positive rate saturated around 1 Hz detection rate and higher detection

rates were accompanied by an increasing false discovery rate (Figure S3D). A maximum detection rate of 1 Hz was set as a selection

criterion for the sessions with on-time or delayed stimulation, in which the stimulus artifact interfered with proper characterization of

online detection performance.

To assess the disruption of SWRs after on-time closed-loop stimulation of the VHC, we adopted the approach of [16]. After removal

of the stimulation artifact and cubic interpolation of the signal in a 10 ms window around the time of stimulation, the ripple envelope

was computed as before. For delayed stimulation control sessions, signal interpolation was performed for a 10 ms time

window around both the detection and stimulation times. The mean ripple envelope after each detection/stimulation was
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computed in a 30 ms time window (from +20 ms to +50 ms) and normalized to the mean ripple envelope in a 30 ms time window

(from �35 ms to �5 ms) prior to detection/stimulation.

Candidate replay events
A smoothed multi-unit activity (mua) rate histogram (5 ms bin size, Gaussian kernel with 15 ms bandwidth) was computed from

all unsorted spikes recorded from the hippocampus with a peak amplitude larger than 60 mA. The rate was detrended using a moving

median filter (window length 3 s). Transient bursts in the detrended mua were defined using a double threshold procedure, where the

upper threshold m+ 43s determines if a burst occurred and the lower threshold m+ 0:53s determines burst start and end time. Bursts

that were separated by less than 20 ms were merged into one, and bursts with a duration shorter than 80 ms were excluded. Candi-

date replay events were defined asmua bursts that overlappedwith a ripple event andwhich occurredwhile the animal was immobile

(speed < 5 cm/s).

Bayesian neural decoding of hippocampal replay
A Bayesian neural decoding approach was used to analyze the spatial information content of candidate replay events [14, 24]. Per

recording session, an encoding model that relates hippocampal spiking activity to the animal’s position in the home and rewarded

target arms was constructed from the data acquired in the instruction phase of the task. Only spikes emitted during run epochs

(speed > 10 cm/s) with a minimum spike amplitude of 60 mV were incorporated into the model. Tetrodes with a mean spiking rate

during run epoch below 0.1 Hz were excluded.

We used a decoding approach that directly relates spike amplitude features to position without prior spike sorting [44]. Under the

assumption that all spikes on a tetrode occur conditionally independent of past spikes and that the firing rate is determined by

position in the maze, the hippocampal activity on a single tetrode can be modeled as a marked temporal Poisson process that is fully

characterized by the rate function lða;xÞ, where a represents the vector of spike amplitudes and x represent position in themaze. The

likelihood of observing a set of spikes with an amplitude of a1:n in time interval D for a given position is then expressed as [44]:

Pða1:n j xÞ=Dn

"Yn
i = 1

lðai; xÞ
#
eDlðxÞ (1)

And the joint likelihood across K tetrodes is obtained by product of the single tetrode likelihoods: Pða1:K
�� xÞ = QK

k = 1Pða1:nk j xÞ.
We used a compressed kernel density estimator to evaluate the rate function lða; xÞ and the marginal rate function lðxÞ from their

component spike count and position occupancy probability distributions [45]. The bandwidth of the Gaussian kernel was set to 30 mV

for spike amplitude and 5 cm for position. Mahalanobis distance threshold for compression was set to 1.0 for an acceptable trade-off

between decoding accuracy and computation time.

To perform neural decoding for the spiking activity recorded on K tetrodes in time windowD and estimate the posterior probability

distribution over position (sampled at a regular grid with 4 cm spacing) from the likelihood we resort to Bayes’ rule:

P
�
x j a1:K

�
=
Pða1:K j xÞPðxÞ

Pða1:KÞ (2)

where a uniform prior PðxÞ is used.

To evaluate the performance of the decoder, we used a five-fold cross-validation procedure in which four out of five instruction trial

blockswere used to build the encodingmodel and the remaining instruction trial blockwas used for decoding the animal’s position on

the maze in D = 100 ms time bins. The decoding error was defined as the distance along the maze between the estimated and real

position. For each session, we evaluated the decoding error distribution separately for left and right environments, as well as for the

complete maze (Figures S4A–S4D). Only sessions with a good decoding performance during the instruction phase (75 percentile of

decoding error distribution is below 30 cm) were selected for subsequent analysis of hippocampal replay (Figures S4A–S4D).

Spatial bias in the posteriors probability distributions
To assess spatial bias in the decoded spatial representation across all candidate events, the mean of the posterior probabilities was

computed separately for the small and large reward environments. For statistical comparison, mean posterior probability for three

regions of interest were computed: proximal target arm (within 50 cm of the reward site), distal target arm (the remaining 60 cm of

the target arm) and the choice platform.

Replay trajectory fit
Candidate replay events were split into D = 10 ms time bins and spiking activity (amplitude > 60 mV) in each bin was used to perform

decoding as described above. Next, separately for left and right target arms, weighted isotonic regression was performed on the

maximum-a-posteriori (MAP) position estimates with posterior probabilities as weights. A goodness-of-fit score was defined that

combined both the posterior probabilities and the R2 of the regression: score = 1=T
PT

t = 1PMAP;t 3 R2, where T is the number of

time bins in the event, and PMAP;t is the posterior probability associated with the MAP estimate in time bin t. The regression was per-

formed twice to fit both amonotonically increasing and amonotonically decreasing trajectory to theMAP estimates, and only the best

fitting trajectory with the highest score was retained.
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For each event, the goodness-of-fit score is compared to the distribution of scores constructed from 500 pseudo-random events in

which each posterior was randomly drawn from the complete set of candidate replay events [14]. Only candidate replay events with a

Monte-Carlo p value < 0.01 were considered to contain significant trajectory replay.

Replay directionality
For each significant replay trajectory, the run direction was decoded using the same Bayesian neural decoding approach as used for

position. Cross-validation showed that decoding performance for run direction was high (Figure S4D). For each replay event, a

direction bias was computed separately for the small and large reward environment as the mean difference in posterior probability

between the inbound and outbound run directions across time bins. The direction bias is compared to the distribution of biases

obtained from 1000 pseudo-random events in which each posterior is randomly assigned a direction. Replay events with a significant

direction bias (Monte-Carlo p value < 0.01) were classified as either ‘forward’ or ‘reverse’, depending on whether the decoded

direction matched the direction of the replay trajectory.

Statistics
To test a difference in means between two paired samples, we used the Wilcoxon signed rank test. To test for a difference in two

sample proportions, we used either the McNemar test (for paired samples) or the two proportion z-test.

To analyze the dependence of behavioral metrics on predictor variables, we fitted Bayesian generalized linear models (GLMs)

using the PyMC3 package for Python [46]. We applied a Poisson regression model (with log link function) for the number of arm visits,

a logistic regression model (with logit link function) for pðvisit1 =TÞ and an ordinary linear regression model for pðTÞ.
We used the following model to study the relation between target arm location (centrality), reward and behavior in the memory

probe trial:

EðyÞ=g�1ðb0 + b1 3 reward + b2 3 centrality + b3 3 reward3 centralityÞ
With the equivalent per-reward model equations:

EðysmallÞ=g�1ðb0 + b2 3 centralityÞ= g�1ðinterceptsmall + slopesmall 3 centralityÞ
E
�
ylarge

�
=g�1ðb0 + b1 + ðb2 + b3Þ3 centralityÞ=g�1

�
interceptlarge + slopelarge 3centrality

�
Here, bc are the model parameters, g�1 is the link function. The categorical reward predictor variable was coded as small = 0 and

large = 1. The centrality predictor variable was treated as an ordinal variable with [center, intermediate, edge] coded as [0, 1, 2].

We used the following model to study the relation between on-time and delayed SWR disruption, reward and behavior in the mem-

ory probe trial:

EðyÞ=g�1ðb0 + b1 3 reward + b2 3disruption+ b3 3 reward3disruptionÞ
Here, bc are the model parameters, g�1 is the link function. The categorical reward and disruption predictors were dummy coded

(reward: small = 0 and large = 1; disruption: delayed = 0, on-time = 1).

Model fitting and inference were performed using Markov chain Monte Carlo (MCMC) sampling methods in PyMC3 (specifically,

the No-U-Turn Sampler). Broad normal distributions were used as priors on the parameters. A summary of the model fitting results is

presented in Tables S2 andS3, wherewe list for the relevant (untransformed)model parameters: the posteriormode, the 95%highest

posterior density (95% HPD) interval, the posterior probability that the parameter is less or greater than zero and the Gelman-Rubin

diagnostic R that indicates good convergence of the Markov chain when its value is close to 1.

DATA AND SOFTWARE AVAILABILITY

Falcon software for closed-loop SWR detection is publicly available at http://www.bitbucket.org/kloostermannerflab. The data and

analysis routines used in this study are available on request, please contact the corresponding author.
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